Disentangling Accretion Disk and Dust Emissions in the Infrared Spectrum of Type 1 AGN

نویسندگان

  • Antonio Hernán-Caballero
  • Evanthia Hatziminaoglou
  • Almudena Alonso-Herrero
  • Silvia Mateos
چکیده

We use a semi-empirical model to reproduce the 0.1–10μm spectral energy distribution (SED) of a sample of 85 luminous quasars. In the model, the continuum emission from the accretion disk as well as the nebular lines are represented by a single empirical template (disk), where differences in the optical spectral index are reproduced by varying the amount of extinction. The nearand mid-infrared emission of the AGN-heated dust is modeled as the combination of two black-bodies (dust). The model fitting shows that the disk and dust components are remarkably uniform among individual quasars, with differences in the observed SED largely accounted for by varying levels of obscuration in the disk as well as differences in the relative luminosity of the disk and dust components. By combining the disk-subtracted SEDs of the 85 quasars, we generate a template for the 1–10μm emission of the AGN-heated dust. Additionally, we use a sample of local Seyfert 1 galaxies with full spectroscopic coverage in the 0.37–39μm range to demonstrate a method for stitching together spectral segments obtained with different PSF and extraction apertures. We show that the disk and dust templates obtained from luminous quasars also reproduce the optical-to-mid-infrared spectra of local Seyfert 1s when the contribution from the host galaxy is properly subtracted.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

From Thin to Thick: the Impact of X-ray Irradiation on Accretion Disks in Agn

We argue that the X-ray and UV flux illuminating the parsec-scale accretion disk around luminous active galactic nuclei (AGN) is super-Eddington with respect to the local far-infrared dust opacity. The far infrared opacity may be larger than in the interstellar medium of the Milky Way due to a combination of supersolar metallicity and the growth of dust grains in the dense accretion disk. Becau...

متن کامل

Clumpy Dust Tori in Active Galactic Nuclei

Active Galactic Nuclei (AGN) are amongst the most luminous objects in the universe. The source of their activity is accretion onto a supermassive black hole in the center of the galactic nucleus. The various phenomena observed in AGN are explained in a common unification scheme. The cornerstone of this unification scheme of AGN is the presence of an optically and geometrically thick dust torus ...

متن کامل

Dusty Disks and the Infrared Emission from AGN

The distortions inferred in the gaseous disks of active galaxies suggest that a significant, and possibly dominant fraction of the 1-1000 μm radiation observed from AGN must be thermal emission from gas and dust heated by the central source. We report calculations of the growth and sublimation of dust grains in the outer parts of accretion disks appropriate to AGN. The thermal state of the gas ...

متن کامل

High-Spatial Resolution SED of NGC 1068 from Near-IR to Radio Disentangling the thermal and non-thermal contributions

We investigate the ideas that a sizable fraction of the interferometrically unresolved infrared emission of the nucleus of NGC 1068 might originate from other processes than thermal dust emission from the torus. We examine the contribution of free-free or synchrotron emissions to the central midand near-IR parsec-scale emitting region of NGC 1068. Each mechanism is constrained with parsec scale...

متن کامل

Radiation Pressure Supported Starburst Disks & Agn Fueling

We consider the structure of marginally Toomre-stable starburst disks under the assumption that radiation pressure on dust grains provides the dominant vertical support against gravity. This assumption is particularly appropriate when the disk is optically thick to its own infrared radiation, as in the central regions of Ultraluminous Infrared Galaxies (ULIRGs). We argue that because the disk r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017